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A B S T R A C T   

Dense three-dimensional point clouds provide opportunities to retrieve detailed characteristics of plant organ- 
level phenotypic traits, which are helpful to better understand plant architecture leading to its improvements 
via new plant breeding approaches. In this study, a high-resolution terrestrial LiDAR was used to acquire point 
clouds of plants under field conditions, and a data processing pipeline was developed to detect plant main stalks 
and nodes, and then to extract two phenotypic traits including node number and main stalk length. The proposed 
method mainly consisted of three steps: first, extract skeletons from original point clouds using a Laplacian-based 
contraction algorithm; second, identify the main stalk by converting a plant skeleton point cloud to a graph; and 
third, detect nodes by finding the intersection between the main stalk and branches. Main stalk length was 
calculated by accumulating the distance between two adjacent points from the lowest to the highest point of the 
main stalk. Experimental results based on 26 plants showed that the proposed method could accurately measure 
plant main stalk length and detect nodes; the average R2 and mean absolute percentage error were 0.94 and 4.3% 
for the main stalk length measurements and 0.7 and 5.1% for node counting, respectively, for point numbers 
between 80,000 and 150,000 for each plant. Three-dimensional point cloud-based high throughput phenotyping 
may expedite breeding technologies to improve crop production.   

1. Introduction 

Crop improvement needs to increase at a faster pace due to a growing 
global population, climate change, and the limitations of natural re-
sources such as arable land and water (Gerland et al., 2014; Tilman 
et al., 2011). To address this tremendous challenge, it is urgent to 
develop new technologies to accelerate plant breeding (Pieruschka and 
Schurr, 2019). Plant phenotyping measures and describes a diversity of 
phenotypic traits from cell to organ to the whole plant and assesses plant 
development and performance (Dhondt et al., 2013; Goggin et al., 2015; 
Ninomiya et al., 2019), which plays a vital role in accelerating the se-
lection of new cultivars of crops to meet specific breeding and research 
goals and has become a rapidly-evolving area of focus in agricultural 

applications (Czedik-Eysenberg et al., 2018; Granier and Vile, 2014). 
Cotton (Gossypium spp.) is among the most economically important fiber 
crops, accounting for almost 79% of the total natural fiber production 
throughout the world (Fangueiro and Rana, 2016). Phenotypic traits of 
plant architectural traits such as main stalk length and nodes are useful 
to breeders and growers alike (Oosterhuis and Kerby, 2008). The 
traditional manual measurements of node related traits are time 
consuming and labor intensive. Therefore, high throughput phenotyping 
(HTP) methods of quantification of cotton plant architectural traits, 
especially noninvasive phenotyping in field conditions, are needed. 

During the past decade, two-dimensional (2D) image-based methods 
were widely used in plant phenotyping applications, including crop 
growth monitoring (Li et al., 2014), disease detection (Ghosal et al., 
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2018), and canopy size measurements (Wang et al., 2018). The emer-
gence of deep learning technology (LeCun et al., 2015) greatly promotes 
the development of plant phenotyping, which offers the potential to 
provide generic solutions for plant image analysis (Singh et al., 2018; 
Tardieu et al., 2017). In order to better understand plant architecture 
leading to its improvements via new plant breeding approaches, efforts 
have been conducted to explore new imaging technologies to describe 
the characteristics of phenotypic traits at the organ level, such as leaf 
and stalk (Yin et al., 2018), flower (Xu et al., 2017) and fruit (Miller 
et al., 2017), and root analysis (Bao et al., 2018). One major challenge 
for image-based methods is the inherent occlusion, which is especially 
difficult to overcome under field conditions (Liu et al., 2019a). In 
addition, it is difficult to extract structure information from images, and 
image quality, which plays a vital role in trait detection performance, is 
hard to control under varied illumination conditions, thereby limiting its 
applications under field conditions (Gibbs et al., 2017; Jin et al., 2018). 

Much effort has been made to explore three-dimensional (3D) 
methods for high throughput plant phenotyping (Vazquez-Arellano 
et al., 2016), and currently 3D-based methods are receiving increasing 
attention. Because on one hand, new sensor technologies and more 
powerful computers make dense point cloud collection and processing 
easier (Guo et al., 2018; Paulus et al., 2014); on the other hand, 3D data 
provide depth and structural information, which is highly useful for 
addressing occlusion, from which a wider variety of phenotypic traits 
can be retrieved (Gibbs et al., 2017). LiDAR is one of the most commonly 
used sensors for field-based phenotyping. Because LiDAR uses its own 
light source for distance measurement, it greatly reduces the impact on 
data quality caused by environmental illumination (Lin, 2015). 2D line 
scan LiDAR combined with GPS were often used to build plant 3D 
models under field conditions during the past decade; plot/plant level 
traits such as canopy size and plant volume were derived from the 
reconstructed point clouds (Auat Cheein et al., 2015; Méndez et al., 
2016). However, because of limited resolution, it is difficult to retrieve 
plant organ level traits, such as those traits related to leaf, bloom, and 
fruit. The emergence of high-resolution LiDAR has enabled the creation 
of highly dense point clouds. Several attempts have been made to 
develop custom algorithms for the extraction of phenotypic traits using 
terrestrial LiDAR data for different types of plants, such as for sorghum 
panicle detection (Malambo et al., 2019), maize-stem size estimation 
(Jin et al., 2018), and grape leaf and stem segmentation (Paulus et al., 
2013). Furthermore, stereo vision and structure from motion (SfM)- 
based methods have been used to reconstruct dense point clouds from 
images (Isokane et al., 2018; McCormick et al., 2016). These image- 
based methods can provide high quality point clouds under well- 
controlled environmental conditions, although limitations of 2D im-
ages related to varied illumination conditions still exist. 

This study focused on cotton plant main stalk and node detection 
using a high-resolution LiDAR under field conditions. A node is the place 
where a branch joins with the main stalk (Fig. 1) (Corporation and 
Cottoninfo, 2019; Stewart et al., 2009). A cotton plant has an erect and 
prominent main stalk and consists of nodes and internodes. Two type of 
branches—vegetative and fruiting branches—are produced in a cotton 
plant. Vegetative branches arise from the main stalk near the ground, 
and the number depends primarily on environment and plant spacing. 
Fruiting branches, however, are produced primarily by a plant and 
produce fruits (cotton bolls). McCarthy et al. (2009) developed a vision 
system to detect cotton plant nodes from RGB images, in which nodes 
were identified by extracting line features of main stems and branches 
from acquired images. Although the absolute error of internode distance 
measurement for 95 detected nodes were small (6.1 mm), only around 
11% (95 out of 840) nodes were detected. Visual occlusion was the main 
reason for nodes going undetected. Yamamoto et al. (2016) detected 
node and internode length of tomato plants from images under 
controlled environment, and image limitations with regard to occlusion 
is still difficult to overcome. Jin et al. (2018) introduced a median 
normalized-vector growth algorithm to segment stem and leaf of maize 

from point clouds and achieved an average segmentation accuracy of 
93% for 30 samples, then phenotypic traits such as stem length and 
width, crown diameter and height were calculated. However, based on 
the review of phenotyping literature, 3D-based cotton plant node 
detection remains unexplored. Cotton plants have complex structures 
and their branches are long and dense. It is very likely that a branch 
crosses or is physically connected to other branches, posing challenges 
for node detection for cotton plants. 

The overall goal of this study was to develop a 3D point cloud pro-
cessing pipeline for field-based cotton plant main stalk detection and 
node counting using terrestrial LiDAR data. Specific objectives were to: 
(1) investigate the feasibility of applying a terrestrial LiDAR sensor to 
obtain plant point clouds under field conditions; (2) detect cotton plant 
main stalks using a Laplacian-based skeleton extraction algorithm and a 
graph-based approach; (3) detect plant nodes by finding the intersection 
between the main stalk and branches; (4) test the performance of the 
developed method using point clouds with different densities for two 
phenotypic traits (plant main stalk length and node number). 

2. Material and methods 

2.1. Experimental field and data collection 

The experimental field was located at the Iron Horse Farm (latitude: 
37.730 N, longitude: 83.303 W) in Greene County, GA, USA. There were 
in total 132 single cotton plants, 12 rows by 11 columns, with the plant 
inter-distance of approximate 152.4 cm (Fig. 2a). A 3D terrestrial LiDAR 
sensor (FARO Focus S70, FARO Technologies, USA) (Fig. 2b) mounted 
on a tripod at a height of approximately 1.0 m was used to scan plants to 
acquire point cloud data using a scanning point distance of 3.1 mm at 10 
m. The sensor could conduct a 360◦ scan on the horizontal plane, so each 
plant could be scanned from four perspectives, while each scan could 
cover four plants (Fig. 2a). The scans were registered as point cloud 
datasets by the software, FARO SCENE, which was included with the 
sensor (Fig. 2c) and had a mean point error of 2 mm. The ground plane 
was removed using the tool provided by the SCENE software before 
exporting the point cloud data. Data collection was conducted on 
December 11 and 18, 2018, respectively. Fifteen plants were scanned on 
each day, resulting in a total of 30 point cloud datasets. The ground truth 

Fig. 1. Illustration of a general cotton plant architecture.  
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data for two phenotypic traits—main stalk length and node num-
ber—were measured manually on the same day. Main stalk length was 
measured using a soft tape measure and node number was counted 
manually for each plant. 

Highly accurate point clouds were obtained with the LiDAR using the 
proposed scanning strategy under field conditions (Fig. 3), from which 
plant organs such as branches and cotton bolls could be observed. The 
plants varied significantly in appearance because of environmental and 
genotypic factors. For this study, we observed plants with three basic 
types of plant architecture: typical upright cotton plants with erect stalks 
(Fig. 3a); slightly lodged plants with the main stalks moderately tilted 
(Fig. 3b); and severely lodged plants with the main stalks bent in several 
places such that some branches touched the ground (Fig. 3c). A cotton 
plant that is bent by chewing insects or heavy wind is known as lodging. 
The highest point of a plant was located at the main stalk in the first two 
categories. However, the severely lodged plants in the third category 
often have sustained damage; consequently, the highest points were 
located at one of the branches instead of at the main stalk for plants in 
the third category. For this study, we processed data only from plants in 

the first two categories (Fig. 3a and b). 

2.2. Main stalk and node detection 

Identification of the main stalk is a prerequisite for many plant organ 
level phenotypic trait measurements (Wang et al., 2018; Wu et al., 
2019). A plant node is the part of the main stalk where branches start to 
grow, which can be detected by identifying the intersection between the 
main stalk and a branch (Fig. 4). The method for plant main stalk and 
node detection developed in this study mainly consisted of three steps: 
3D skeleton extraction, main stalk detection, and node detection. Point 
cloud skeletonization is a thinning operation by which point cloud re-
gions are reduced to lines that approximate their center lines. The 
purpose of skeletonization is to generate a thin, centered structure that 
maintains the topological and geometrical characterizations of the 
original point cloud data while greatly reducing data volume to facilitate 
further analysis (Tagliasacchi et al., 2016). 

Fig. 2. Experimental field and scanned point cloud data using a terrestrial LiDAR. (a) Schematic of plant layout and scanning positions. (b) The LiDAR sensor used in 
this study. (c) Partial collected point cloud data. 

Fig. 3. Three categories of representative plants with different architectural patterns: (a) plants with an upright main stalk, and (b) and (c) plants with tilted main 
stalks. The highest point of (b) is located at the main stalk, while the highest point of (c) is located at a branch instead of at the main stalk. 
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2.2.1. 3D skeleton extraction 
A Laplacian-based contraction method was used to extract the plant 

curve skeleton from the point clouds because it is resistant to noise and 
can handle a moderate amount of missing data (Cao et al., 2010). Point 
clouds were denoised before feeding the skeleton extraction algorithm, 
and only point position information was used for skeletonization. Two 
steps were involved in this method, including geometric contraction and 
topological thinning. A point cloud could be contracted by iteratively 
solving the linear system (Eq. (1)). 
[

Wt
LLt

Wt
H

]

Pt+1 =

[
0

Wt
HPt

]

(1)  

where Pt was the point cloud for the tth contraction operation, Pt+1 was 
the corresponding point cloud after the contraction operation, and P0 (t 
= 0) was the original point cloud with dimension of n × 3, n was the 
number of points; Lt was a n × n Laplacian matrix which was constructed 
via 1-ring of a Delaunary triangulation; Wt

L and Wt
H were the n × n di-

agonal matrices, balancing the smoothness and similarity to the original 
points, respectively; 0 was a n × n zero matrix. Wt+1

L,i and Wt+1
H,i were 

updated using Wt+1
L,i = SLWt

L,i and Wt+1
H,i = W0

H,iS0
i /St

i , respectively, where 
SL was a constant coefficient, SL = 3 was used following the suggestion in 
(Cao et al., 2010). W0

L, i = 1/S0
i , W0

H, i = 1, and S0
i was the mean 

neighbor extent of point i in the point cloud; similarly, St
iwas the mean 

neighbor extent of point i in the point cloud for the tth repetition. The 
iteration of the contraction operation stopped when convergence ach-
ieved a steady state. The final contracted point cloud was denoted by C. 

For the topological thinning operation, the contracted point cloud C 
was sampled using farthest point sampling (FPS) (Moenning and 
Dodgson, 2003) with a resolution of ε. FPS selects the lowest point in C 
as the starting point and iteratively selects the farthest point within a 
ball with a radius of ε from the previously selected points to produce a 
sampled dataset C΄ from C. We then obtained the skeleton by imposing 
an initial connectivity on C΄ and then collapsing unnecessary edges. The 
parameter ε was selected according to the size of interested traits. ε = 5 
mm was used in this study since this value was so small that the 
extracted skeleton could distinguish nodes based on the observation of 
cotton plant internode distance. A down-sampling operation was con-
ducted to reduce the point numbers to improve computational efficiency 
before performing the skeleton extraction. For clarity, it is important to 
distinguish between contraction and down-stamping. Contraction is an 
operation to shrink the shape of point clouds. It does not reduce the 
point numbers, while maintaining the key topological and geometrical 
features. Down-sampling is a thinning operation used to select some of 
the points from the original point clouds based on predefined rules. It 
reduces the point numbers but maintain the original shape. 

2.2.2. Main stalk detection 
A graph-based method was developed for main stalk detection, 

which involved two main steps: (1) initial main stalk points detection 
and (2) main stalk points refinement. The skeleton point set, denoted by 
Pt = {p1,p2,⋯,pk}, was divided into two sub-point sets: S and B. S was 
the main stalk point set, and B was a point set including all other points, 
Pt = S ∪ B,S ∩ B = ∅. 

The initial main stalk points were detected by converting the skel-
eton points (Fig. 4a) to a graph (Fig. 4b) based on the 3D Euclidean 
distance between two points pi and pj (Eq. (2)). If the distance was less 
than a threshold λ which was selected based on the skeleton resolution ε, 
the two points were connected, such as point 1 and 2; otherwise, they 
were disconnected, such as point 3 and 11 (Fig. 4a). Each point in the 
generated graph was taken as a vertex and connected to its neighboring 
points with edges (Fig. 4b). The neighboring points are all those points 
whose 3D Euclidean distance to the given point is less than the pre-
defined threshold λ. Three sub-graphs were included in Fig. 4b: sub- 
graph 1(sub-graph 1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}) contained most 
parts of the plant, resulting in the most number of points; sub-graph 2 
(sub-graph 2 = {11, 12}) was created by part of a branch which did not 
connect to the main stalk because the minimum distance between point 
11 and the main stalk points was greater than λ; sub-graph 3 (sub-graph 
3 = {13, 14}) was created by materials laying on the ground, such as 
weeds or parts of the plant branches that were touching the ground. The 
main stalk points should be included in the sub-graph containing the 
most points (sub-graph 1 in Fig. 4b), which was selected for further 
processing. Then the selected sub-graph was converted to a minimum 
spanning tree (MST) (Tewarie et al., 2015) in order to cut circles in the 
graph (Fig. 4c), in which the lowest point (point 1) was selected, and 
starting from which, the standard shortest path search method was used 
to derive all paths in the MST. The path with the highest terminal point 
(point 6) was selected as the main stalk. 

d(i, j) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xi − xj

)2
+
(
yi − yj

)2
+
(
zi − zj

)2
√

(2) 

For the ideal situation in which there are no gaps in the skeleton (a 
gap means the distance between two adjacent points is greater than the 
predefined skeleton resolution ε), the parameter λ could be selected from 
the range (ε, 2ε) such that all main stalk points could be detected. 
However, gaps may exist in the skeleton because of incomplete point 
clouds although multi-view scanning was used for data collection in this 
study. In order to overcome the problem caused by potential gaps, λ 
should be a value slightly greater than the maximum gap distance in the 
initial main stalk detection step. The trajectory of a main stalk could be 
detected, but some points (points between two detected adjacent main 
stalk points in this step) belonging to the main stalk might not be 
detected. 

Fig. 4. Schematic of the algorithm for main stalk detection. (a) Example of the extracted skeleton points of a plant. The solid line means the two points are connected 
since the distance between them is so small (less a predefined threshold); the dashed line means the two points are not connected due to the large distance. (b) Graph 
converted from (a), in which three sub-graphs are included. Sub-graph 1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, sub-graph 2 = {11, 12}, and sub-graph 3 = {13, 14}. (c) 
Minimum spanning tree converted from sub-graph 1 in (b), the lowest point (point 1) is selected, and starting from which, four paths are detected, they are path 1 =
{1, 2, 3, 4, 5, 6}, path 2 = {1, 2, 7}, path 3 = {1, 2, 3, 4, 8, 9}, and path 4 = {1, 2, 3, 4, 8, 10}. Path 1 is selected as the main stalk because it contains the highest 
terminal point (point 6). 
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The aim of the refinement operation was to detect these missed main 
stalk points according to the trajectory of pre-detected main stalk points. 
The method relied on the assumption that the main stalk within a short 
distance scale (λ) is a straight line. A line was formed between two 
adjacent pre-detected main stalk points, and the missed points located 
between the two pre-detected points should be very close to the line. In 
this study, a value of 3 mm was used to make a judgement whether a 
point belonged to the main stalk. If the distance between a point and the 
line was less than 3 mm, the point was considered to be a main stalk 
point and added to the main stalk point set S. Otherwise, it was a branch 
point. 

2.2.3. Node detection 
A node can be detected by identifying the intersection between the 

main stalk and a branch. Therefore, after the main stalk was detected, 
individual branches needed to be identified. A ‘pruning’ operation was 
designed to cut parts of branches which were far away from the main 
stalk before identifying each branch in order to simplify plant structures. 
First, circles were set with the same radius r along the main stalk starting 
from the lowest point in the crown to the highest point (Fig. 5a); second, 
points outside of the circles were removed. Thus, a short part of each 
branch close to the main stalk was kept, resulting in a simpler branch 
structure (Fig. 5b). After that, 3D density-based spatial clustering of 
applications with noise (DBSCAN) was applied on the remaining branch 
points, from which the output clusters were individual branches. 

To detect a node, 3D Euclidean distances between points in a branch 
cluster b = {b1, b2,⋯, bn} and a main stalk point set S = {s1, s2,⋯, sm}

were calculated, generating a distance matrix table (Table 1). siz was the 
value on the z axis for stalk point si; d(si, bj) denoted the distance be-
tween point si and bj; dsi was the minimum distance between point si and 
points in the branch cluster b. An example of visualization for Table 1 
was shown in Fig. 6b, in which black dots were the distance point pairs 
(siz, d(si, bj)) and the blue line consisted of point pairs (siz, dsi) where dsi is 
the minimum distance between si and bj. Local minimum peak points of 
the blue line were then detected, denoted by Ni = (sNi, dNi). If the vertical 
axis value dNi was small enough (dNi < τ1) (Fig. 6b), it indicated that 
there was a node in s, and the value of the node on z-axis was sNi. 
Accordingly, the corresponding node could be identified in s. The 
parameter τ1 was used to check whether the distance between the main 
stalk and a branch was so large that the position of the detected node 
needed to be adjusted. τ1 = 1 cm was used in this study considering that 
the skeleton resolution was 5 mm. 

For the situation demonstrated in Fig. 6c, a gap existed between the 

main stalk and a branch, i.e., the vertical axis value of the peak point was 
greater than τ1 (Fig. 6d). A pseudo node could be found in the corre-
sponding point set s using the method described for the situation shown 
in Fig. 6a and b, However, the actual node should be located below the 
pseudo node (Fig. 6c). The actual node location could be estimated using 
the following method: a line was fit for the branch points, and then a 
point in s having the shortest distance to the line was selected as the 
actual node. 

For the situation two or more peak points were detected (Fig. 6e and 
f), a k-means clustering method with k = 2 was applied to reduce the 
number of peak points to two. Then, for each peak point, the method 
described for the situations in Fig. 6a and c was used to identify the node 
position in s. k = 2 was used because misclustering of 3D DBSCAN 
happened mostly with two close branches based on observation. If the 
vertical axis value of a peak point was greater than τ2 = 3 cm, the point 
would not be further analyzed because it was very likely caused by noisy 
points 

The data processing algorithm was developed and implemented in 
software MATLAB 2018a (The Math Works Inc., Natick, MA, USA) on a 
desktop equipped with an Intel i7-6700 K CPU 4.00 GHz with 16G RAM, 
running an operating system of Windows 10 Pro. 

2.3. Plant architecture traits measurements and accuracy validation 

After plant main stalk and nodes were detected, two plant architec-
ture traits, including plant node number and main stalk length, were 
extracted. The node number was obtained by counting all detected 
nodes. Main stalk length was calculated by accumulating the distance 
between two adjacent points of the whole main stalk skeleton points 
starting from the lowest point of the crown (Eq. (3)). 

L =
∑M− 1

i− 1
d(i, i + 1) (3)  

where L was the main stalk length, M was the point number of the main 

Fig. 5. Schematic of branch pruning operation. (a) Circles were set with the same radius r along the main stalk starting from the lowest point in the crown to the 
highest point. (b) Branches after pruning operation. 

Table 1 
Distance matrix between the main stalk and a branch cluster.   

b1 b2 … bn min(d(si, bj)) 

s1z d(s1, b1) d(s1, b2) … d(s1, bn) ds1 

s2z d(s2, b1) d(s2, b2) … d(s2, bn) ds2 

⋮ ⋮ ⋮ … ⋮ ⋮ 
smz d(sm, b1) d(sm, b2) … d(sm, bn) dsm  
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stalk and d(i, i + 1) was the Euclidean distance between point i and i + 1. 
For plant node number counting, the mean absolute percentage error 
(MAPE) was computed between the algorithm measuring node numbers 
Ni and the manual measurements mi by Eq. (4). P was the number of 
plants. 

MAPE =

∑P

i=1

|Ni − mi |
mi

P
× 100% (4) 

In addition, the coefficient of determination (R2) was calculated to 
assess the performance. These two metrics were also used to assess the 
other phenotypic traits. The method’s performance was tested with 
different point cloud densities of 50,000, 80,000, 120,000, and 150,000 
points for each plant. 

3. Results 

3.1. Skeleton extraction and main stalk detection 

Overall, the extracted skeletons matched well with the original point 
clouds (Fig. 7), maintaining plants topological and geometrical features 
while greatly reducing point numbers. In this study, a single plant had 
around 3 ~ 6 million points, while the skeleton had around 2 ~ 5 
thousand points depending on the plant size. As demonstrated in Fig. 7a, 
b and c, a branch was represented by a line of points in the extracted 
skeleton dataset. Although, the crown could be simply detected by 
selecting the lowest point of the skeleton, as shown in Fig. 7a and b, this 
would not work for the situation as shown in Fig. 7c. Some skeleton 
points inside the red ellipse in Fig. 7c, which were generated by any 
branch touching the ground, might have the same lowest height as the 
crown. In the proposed graph-based method, the points in the red ellipse 
could easily be removed based on the number of points for each sub- 

Fig. 6. Schematic for the node localization algorithm. For situation (a), the branch was connected to the main stalk, the point (b) in the main stalk with minimum 
distance was considered to be the node; For situation (c), there was a gap between the main stalk and a branch, and the real node (d) was below the point with 
minimum distance. For situation (e), two local low peaks were detected, and the corresponding distance was less than the distance threshold, so the two nodes could 
be detected. 
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graph. 
The main stalk could be reached by laser beams from all scanning 

perspectives; therefore, the occluded areas were small, resulting in small 
gaps in the main stalk skeleton (Fig. 7b). Based on this observation, the 
parameter λ, which was used to convert the skeleton points into a graph, 
was set to be 2 cm for the step of initial main stalk point detection, and 
results showed that this setting was large enough to cover all gaps. For 
the well-extracted main stalk skeleton (no gaps existed), there were 
three skeleton points between two adjacent pre-detected main stalk 
points, as demonstrated in the zoomed-in figures in Fig. 7a and c, 
because ε = 5 mm was used for skeleton extraction. Results of the main 
stalk points refinement operation showed that main stalk points were 
successfully detected for all plants. However, some branch points might 
be assigned to the main stalk point sets (Fig. 7f). This would not affect 
the presence of node detection, but would cause the detected node 

location to shift. More discussion was presented in Section 3.2. 

3.2. Individual branch identification and node detection 

Branch structure became much simpler compared to the original 
situation after the pruning operation (Fig. 8). We found that the circle 
radius r was flexible; experimental results showed the value did not 
affect the results much when it was selected in a range of 10–20 cm. In 
this study, the circle radius r was set to be 15 cm. The parameters Eps and 
MinPts of DBSCAN clustering algorithm were selected as 2 cm and 3, 
respectively, for the individual branch identification, considering the 
skeleton resolution configuration and potential skeleton gap size. Re-
sults showed that most of the ‘pruned’ branches were successfully 
grouped into different clusters. However, it was observed that a branch 
might be divided into different clusters due to the gaps (Fig. 8a), and 

Fig. 7. Extracted skeletons and main stalk detection results. The first row demonstrated the extracted skeletons, the lowest points of crowns (indicated by red 
triangles) and initial main stalk points (indicated by red dots) detection results. (a) Skeleton of a plant with a straight upward main stalk. (b) Skeleton of a plant with 
a tilted main stalk; gaps existed in the main stalk skeleton points. (c) Skeleton of a plant with a tilted main stalk, part of the branch skeleton points was at the same 
height as the root point. The second row ((d), (e) and (f)) demonstrated the main stalk detection results after refinement operation. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Individual branch identification results for the two kinds of representative plant architectures. (a) A plant with a straight upward main stalk; (b) and (c) Plants 
with tilted main stalks. The main stalk points were indicated in red. For branches, each color represented a detected branch cluster. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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branches which were too close to each other would be grouped in the 
same cluster (Fig. 8c). These misclustering results were addressed by the 
node detection method described in Fig. 6. 

Overall, the proposed node detection method performed well to 
identify nodes for plants with normal (Fig. 9a) and tilted main stalks 
(Fig. 9b and c). Usually, nodes at the lower part of a plant were denser 
than those located at a higher level. The proposed method was able to 
distinguish them due to the skeleton resolution configuration (Fig. 9a). 
In the case that a branch was divided into two or more clusters (Fig. 8a), 
the cluster which was far away from the main stalk could be removed 
using the distance filter (τ2 = 3 cm); For the situation demonstrated in 
Fig. 7f, a node was detected, but the location was shifted a few points 
(Fig. 7c). This was one of the limitations for the main stalk points 
detection. 

3.3. Validation of extracted plant architecture traits 

The performance of the method developed to calculate plants’ main 
stalk length and node number was stable when the number of points for 
a plant was greater than 80,000 (Fig. 10). The average R2 and MAPE for 
the plant’s main stalk length were 0.94 and 4.3%, respectively, for point 
numbers between 80,000 and 150,000. Specifically, for the plant’s main 
stalk length, the performance did not decrease when the number of 
points was reduced to 50,000, which indicates that the plant’s main 
stalks were detected successfully. The average R2 and MAPE for the node 
numbers were 0.70 and 5.1%, respectively, for point numbers between 
80,000 and 150,000, while the performance decreased significantly 
when the point number was 50,000. We could not obtain point clouds 
for branches as dense as that of the main stalks because branches could 
not be scanned from four different directions and were thinner than the 
main stalk. 

4. Discussion 

Highly accurate point clouds of plants can be obtained using the 3D 
LiDAR with multi-view scanning strategy under field conditions, which 
provide a detailed and precise representation of plants, enabling 
retrieving plant phenotypic traits at both the whole plant level and 
organ level (Dhondt et al., 2013). The multi-view scanning strategy 
greatly reduces the possibility of occlusion, which is one of the biggest 
challenges for phenotypic trait extraction from 2D images. However, 
one limitation is that it takes a relatively long time for data collection. 
Therefore, scanning positions will be optimized in the future, keeping 
the quality and density of point clouds while reducing the number of 
scanning positions. For example, a plant can be scanned from fewer 
perspectives, such as three (each scan covering 120◦) or even two (each 
scan covering 180◦); another potential solution would be to mount the 
LiDAR at a higher position so that it can cover a larger field area (more 
plants) (Malambo et al., 2019; Wu et al., 2019), while configuring the 
sensor at a higher scanning resolution to achieve the same level of 

accuracy. Furthermore, the sensor can be mounted on a GPS-navigated 
robot platform, and point cloud registration operation can be conducted 
while collecting data. An efficient data collection method would be 
extremely useful for large field applications. 

Overall, the skeleton extraction method performed well for cotton 
plants which had wide variation in appearance of the architecture, 
although there existed small gaps. In order to address the issue of gaps 
existing in the skeletons, a parameter λ, which was four times larger than 
the skeleton resolution, was used for the main stalk detection to ensure 
that two coarse adjacent connected points in the graph can cover the 
gaps. Gaps also exist between a branch and the main stalk as shown in 
Fig. 6c, specific algorithms were proposed to overcome the problem. If 
the skeleton could be well-extracted (no gaps would exist), the proposed 
main stalk and node detection method could become simpler. For 
example, the main stalk detection could be implemented just by the first 
step via setting the parameter λ as a value in the range of (ε, 2ε). The 
node position would not be affected by the gaps between a branch and 
the main stalk described in Fig. 6c and Fig. 7f. Therefore, future work 
will focus on optimization of the skeleton extraction algorithm. New 
algorithms will be developed to retrieve skeletons from incomplete point 
clouds. Structure patterns of the visible branches can be used to predict 
branch growth direction in order to fill out gaps (Li and Wang, 2018; Mei 
et al., 2016). A point cloud down-sampling method can also contribute 
to improve skeleton quality. In this study, the original point clouds were 
down-sampled using a random sampling method. For small stem 
branches, which generate fewer points than big ones, the point number 
may be too small to extract a fine skeleton after the down-sampling 
operation. If the down-sampling operation was conducted based on 
point density information, i.e., a branch which has a low density of 
points, fewer points would be removed during the down-sampling 
operation; otherwise, more points are removed. This down-sampling 
method could result in a more evenly distributed point cloud, which is 
good for skeleton extraction. 

With regard to node detection, it was observed that the method 
produced a higher FN rate than FP rate. FN was mainly attributed to the 
situation that there was a big gap between a branch and the main stalk 
skeleton points (Fig. 11a, b and c). Some branches, especially those 
located at the top of a plant, were of a small stem diameter, resulting in 
less points in the original point cloud compared to those with a larger 
stem diameter. After down-sampling, the full skeleton of the branches 
with a small stem diameter might not be retrieved if they generate a very 
limited number of points. Fig. 11d demonstrated a representative situ-
ation for FP node detection. There was a sub-branch, which was close to 
the main stalk, and ghost points appeared due to the point cloud regis-
tration operation and environmental factors such as wind, resulting in 
the corresponding branch skeleton points being very close to the main 
stalk (Fig. 11e). The node detection method would detect this as a node 
(Fig. 11f). Because wind affects point cloud data randomly, it is difficult 
to remove all ghost points although denoising preprocessing was 
applied. 

Fig. 9. Representative results of node detection. (a) A plant with normal architecture; (b) and (c) Plants with tilted main stalks. Detected nodes are indicated in red. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Results shown in Fig. 9 and Fig. 10 indicated that main stalk points 
were successfully detected using the proposed method which overcame 
the gap problem in the skeleton points. Another limitation of the main 
stalk detection method is that it is designed only for when the highest 
point of the plant is at the main stalk. However, some plants may not 
satisfy this requirement. For example, a plant may lodge because of wind 
or other environmental factors, which could result in one of the branches 
being the highest point, as demonstrated in Fig. 3c. The main stalk 
detection method will be optimized in the future. One potential solution 
is to apply 3D deep learning methods (Liu et al., 2019b; Qi et al., 2019), 
which can extract features in complex object detection more effectively. 

In addition to the traits extracted in this study, more traits can be 
extracted from the point cloud data. For example, if whole branches, not 
just part of them as in this study, could be identified, combined with 
cotton boll detection technology (Sun et al., 2018), information as to 
where each cotton boll is located on each branch could be obtained. 

Branch angle (the angle between a branch and the main stalk) also could 
be estimated from the skeleton. A plant with average, small branch 
angles indicates that the plant architecture exhibits more upright 
branches, producing a more compact shape. This is helpful to increase 
plant density and improve final yield (Tian et al., 2019). Other traits 
such as canopy size and plant volume could also be detected. New al-
gorithms will be developed for these traits. 

5. Conclusions 

In this study, highly accurate point cloud data were obtained using a 
high-resolution terrestrial 3D LiDAR sensor, thus enabling the retrieval 
of plant organ level phenotypic traits. The extracted skeleton greatly 
reduced point cloud data volume meanwhile maintained the topological 
and geometric patterns. Based on the skeleton point clouds, plant main 
stalks and nodes were accurately detected. We tested the algorithm 

Fig. 10. Performance (a) R2 value and (b) mean absolute percentage error for the main stalk length measurement and node number counting at different point 
cloud densities. 

Fig. 11. Error analysis for false negative and false positive node detection. The first row is to demonstrate FN. Incomplete point cloud for a branch in (a). For the 
skeleton, there is a gap between the branch and the main stalk (b). The smallest distance is greater than the outliner threshold (c), resulting in a missing node. The 
second row is to demonstrate FP. The sub-branch is almost connected to the main stalk due to noisy points in (d). For the skeleton (e), although there is a small gap, it 
is less than the distance threshold, so two nodes are detected (f). 
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developed with different point cloud densities, and results demonstrate 
that the plant’s main stalk length and node number could be detected 
accurately with stable performance when the point number was greater 
than 80,000 for each plant. In the future, new scanning strategies that 
require fewer scans without sacrificing accuracy will be explored to save 
field data collection time, and new algorithms will be developed to 
retrieve more traits from point clouds. 
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